================================================== ps5401 d:\northps\block456-14jan08\ps5401.txt 17 Jan 08 22:53:42 Thursday elapsed time 00:11:52 Rectangular area = 0.876 km2 Data area = 0.871 km2 *percent double coverage = 98.615 **low-curvature dc area = 0.000 km2 1st-return RMSE, low-curvature areas = 3.508 95p = 4.274, 98p = 4.693, 99.5p = 5.084 BE RMSE = 5.131 95p = 10.100, 98p = 13.975, 99.5p = 21.040 2043667 unique returns and 0 duplicate returns 8981.01951133 1429269.84 529303.07 2328.69 1 1 8995.91652506 1426270.04 529585.18 1629.84 1 1 246.68742947 9242.60395453 1426270.02 531720.45 888.56 2 1 9255.86051208 1429269.97 529323.94 2427.41 1 1 156610.041857 165865.902369 1429268.12 532240.37 1067.43 1 2 165879.737015 1426270.08 531360.05 1030.42 1 1 296.293075 166176.03009 1426271.39 532245.46 1054.77 2 1 166193.104891 1429267.31 529407.44 2327.77 1 1 1378803 1st returns 654663 2nd returns 10049 3rd returns 152 4th returns 51456 ground returns 0 blunders curvature versus slope n = 71171 X=0, Y = 35.21 +/- 29.61 Weighted least-squares fit: Y = 74.7 + 1.054 X + -0.01030 X**2 slope versus dZ, curvature < 5 n = 1930 Weighted least-squares fit: Y = 99.4 + 0.918 X + -0.00415 X**2 at X = 100, Y = 149.7 effective RMSE xy = 175.9 slope versus dZ, curvature < 15 n = 5230 Weighted least-squares fit: Y = 98.7 + 1.192 X + -0.00568 X**2 curvature versus dZ, slope < 10 n = 913 X=0, Y = 105.67 +/- 8.86 Weighted least-squares fit: Y = 105.2 + 0.119 X + 0.65052 X**2 Number of samples 71532 Max dz = 900 Mean dz = 144 RMS dz = 195.05127531 100cm = 38.3115249119 percentile value of dz Number of survey units in 1 meter = 3.208 Nominal spot spacing (in survey units) = 5 Nominal pulse density (per m2) = 1 Difference cell size = 2.5 IsData cell size = 1.25 IsData expand cells = 8 IsData shrink cells = 7 BE IsData cell size = 2.5 BE IsData expand cells = 24 BE IsData shrink cells = 24 MaxCurve = 24.69903359999 Curvature expand cells = 4 Curvature shrink cells = 3 Point density cell size = 20 Color critical value = 0.3208 Hue jump at critical value = 90