================================================== ps4917 d:\northps\block456-14jan08\ps4917.txt 17 Jan 08 09:25:42 Thursday elapsed time 00:08:10 Rectangular area = 0.875 km2 Data area = 0.874 km2 *percent double coverage = 91.125 **low-curvature dc area = 0.003 km2 1st-return RMSE, low-curvature areas = 2.780 95p = 3.215, 98p = 4.277, 99.5p = 4.524 BE RMSE = 2.594 95p = 4.794, 98p = 6.369, 99.5p = 9.993 2037062 unique returns and 0 duplicate returns 159013.921278 1509001.5 547247.68 2617.06 2 1 159018.721387 1510269.19 547207.88 2650.78 1 1 410.585266 159429.306653 1510268.36 547250.29 2630.19 2 1 159444.377087 1507270.31 545933.23 3599.76 2 1 1149.3475 160593.724587 1507270.36 547224.11 2863.62 2 1 160612.341613 1510268.9 544253.44 3488.43 2 1 425.172537 161037.51415 1510269.09 545602.78 3421.76 2 1 161052.717207 1507271.92 544255.16 4285.35 2 1 1012381 1st returns 1024681 2nd returns 0 3rd returns 0 4th returns 204778 ground returns 0 blunders curvature versus slope n = 144948 X=0, Y = 38.63 +/- 24.65 Weighted least-squares fit: Y = 62.9 + 1.609 X + -0.01688 X**2 slope versus dZ, curvature < 5 n = 21807 Weighted least-squares fit: Y = 92.4 + -0.172 X + 0.00341 X**2 at X = 100, Y = 109.3 effective RMSE xy = 91.7 slope versus dZ, curvature < 15 n = 42225 Weighted least-squares fit: Y = 91.4 + -0.067 X + 0.00252 X**2 curvature versus dZ, slope < 10 n = 3371 X=0, Y = 89.62 +/- 11.65 Weighted least-squares fit: Y = 88.3 + 1.193 X + -0.12121 X**2 Number of samples 146397 Max dz = 900 Mean dz = 116 RMS dz = 146.348898185 100cm = 58.0291945873 percentile value of dz Number of survey units in 1 meter = 3.208 Nominal spot spacing (in survey units) = 5 Nominal pulse density (per m2) = 1 Difference cell size = 2.5 IsData cell size = 1.25 IsData expand cells = 8 IsData shrink cells = 7 BE IsData cell size = 2.5 BE IsData expand cells = 24 BE IsData shrink cells = 24 MaxCurve = 24.69903359999 Curvature expand cells = 4 Curvature shrink cells = 3 Point density cell size = 20 Color critical value = 0.3208 Hue jump at critical value = 90