================================================== ps4804 d:\northps\block456-14jan08\ps4804.txt 17 Jan 08 06:19:49 Thursday elapsed time 00:08:27 Rectangular area = 0.875 km2 Data area = 0.874 km2 *percent double coverage = 99.554 **low-curvature dc area = 0.001 km2 1st-return RMSE, low-curvature areas = 0.962 95p = 1.495, 98p = 1.629, 99.5p = 1.832 BE RMSE = 2.778 95p = 5.487, 98p = 8.369, 99.5p = 13.767 1828112 unique returns and 0 duplicate returns 157850.754215 1510267.27 550250.76 1311.25 1 1 157865.355817 1507270.49 549179.45 2048.94 2 1 1138.878625 159004.234442 1507271.62 550248.52 1612.01 2 2 159018.688287 1510269.56 547258.16 2628.03 1 1 408.341274 159427.029561 1510268.25 550226.27 1333.48 2 1 159443.00423 1507270.76 547258.04 2846.56 2 1 1150.354554 160593.358784 1507272.43 547464.58 2699.7 2 1 160608.390134 1510268.34 547253.17 2629.6 2 1 910567 1st returns 917545 2nd returns 0 3rd returns 0 4th returns 175980 ground returns 0 blunders curvature versus slope n = 685118 X=0, Y = 51.45 +/- 27.70 Weighted least-squares fit: Y = 66.1 + 1.456 X + -0.01515 X**2 slope versus dZ, curvature < 5 n = 39157 Weighted least-squares fit: Y = 25.6 + -0.040 X + 0.00400 X**2 at X = 100, Y = 61.6 effective RMSE xy = 88.0 slope versus dZ, curvature < 15 n = 155173 Weighted least-squares fit: Y = 25.0 + 0.047 X + 0.00319 X**2 curvature versus dZ, slope < 10 n = 2451 X=0, Y = 24.07 +/- 11.31 Weighted least-squares fit: Y = 23.1 + 1.248 X + 0.11305 X**2 Number of samples 694160 Max dz = 900 Mean dz = 55 RMS dz = 78.9113426574 100cm = 84.3974011755 percentile value of dz Number of survey units in 1 meter = 3.208 Nominal spot spacing (in survey units) = 5 Nominal pulse density (per m2) = 1 Difference cell size = 2.5 IsData cell size = 1.25 IsData expand cells = 8 IsData shrink cells = 7 BE IsData cell size = 2.5 BE IsData expand cells = 24 BE IsData shrink cells = 24 MaxCurve = 24.69903359999 Curvature expand cells = 4 Curvature shrink cells = 3 Point density cell size = 20 Color critical value = 0.3208 Hue jump at critical value = 90