================================================== ps4586 d:\northps\block456-14jan08\ps4586.txt 17 Jan 08 02:46:14 Thursday elapsed time 00:07:09 Rectangular area = 0.875 km2 Data area = 0.874 km2 *percent double coverage = 99.062 **low-curvature dc area = 0.000 km2 1st-return RMSE, low-curvature areas = 2.019 95p = 2.836, 98p = 3.046, 99.5p = 3.245 BE RMSE = 4.257 95p = 8.349, 98p = 12.068, 99.5p = 18.803 1885841 unique returns and 0 duplicate returns 157486.641133 1522277.07 555246.13 2105.79 2 1 157501.530865 1525268.78 553261.45 2679.32 2 1 280.627157 157782.158022 1525269.98 553569.44 2773.19 2 1 157796.423658 1522272.77 553253.6 2938.99 1 1 199724.009076 357520.432734 1522273.09 556247.94 1532.74 2 1 357533.469269 1525269.75 555200.4 3093.25 2 1 268.844857 357802.314126 1525268.83 556145.49 2726.1 2 2 357816.667457 1522270.7 553459.82 2868.14 2 1 937988 1st returns 947853 2nd returns 0 3rd returns 0 4th returns 123516 ground returns 0 blunders curvature versus slope n = 218613 X=0, Y = 74.63 +/- 25.23 Weighted least-squares fit: Y = 79.4 + 0.814 X + -0.00803 X**2 slope versus dZ, curvature < 5 n = 9648 Weighted least-squares fit: Y = 43.9 + 1.052 X + -0.00442 X**2 at X = 100, Y = 104.9 effective RMSE xy = 149.7 slope versus dZ, curvature < 15 n = 37969 Weighted least-squares fit: Y = 48.1 + 0.917 X + -0.00259 X**2 curvature versus dZ, slope < 10 n = 138 X=0, Y = 73.19 +/- 32.98 Weighted least-squares fit: Y = 60.0 + -2.663 X + 0.43467 X**2 Number of samples 219629 Max dz = 900 Mean dz = 103 RMS dz = 136.930639376 100cm = 57.25336818 percentile value of dz Number of survey units in 1 meter = 3.208 Nominal spot spacing (in survey units) = 5 Nominal pulse density (per m2) = 1 Difference cell size = 2.5 IsData cell size = 1.25 IsData expand cells = 8 IsData shrink cells = 7 BE IsData cell size = 2.5 BE IsData expand cells = 24 BE IsData shrink cells = 24 MaxCurve = 24.69903359999 Curvature expand cells = 4 Curvature shrink cells = 3 Point density cell size = 20 Color critical value = 0.3208 Hue jump at critical value = 90