================================================== ps3487 d:\northps\block456-14jan08\ps3487.txt 16 Jan 08 14:54:03 Wednesday elapsed time 00:09:13 Rectangular area = 0.877 km2 Data area = 0.874 km2 *percent double coverage = 60.668 **low-curvature dc area = 0.168 km2 1st-return RMSE, low-curvature areas = 1.149 95p = 2.177, 98p = 2.515, 99.5p = 2.904 BE RMSE = 3.970 95p = 7.564, 98p = 12.632, 99.5p = 22.989 2543990 unique returns and 0 duplicate returns 319653.801968 1528271.69 584595.07 6300.4 1 1 319667.600286 1531268.52 586248.67 5644.23 2 1 1849.483105 321517.083391 1531269.9 586247.36 5642.13 2 2 321537.463875 1528271.95 583253.04 5392.22 2 1 329.414534 321866.878409 1528278.49 583253.45 5388.87 2 2 321881.310643 1531269.86 585076.86 5722.28 1 1 7442.537235 329323.847878 1530948.28 584082.7 5976.6 1 2 329336.682504 1528270.41 583253.25 5392.39 2 1 1271220 1st returns 1272770 2nd returns 0 3rd returns 0 4th returns 740727 ground returns 0 blunders curvature versus slope n = 1050846 X=0, Y = 67.05 +/- 22.28 Weighted least-squares fit: Y = 76.4 + 1.318 X + -0.01487 X**2 slope versus dZ, curvature < 5 n = 416298 Weighted least-squares fit: Y = 3.6 + 0.465 X + 0.00065 X**2 at X = 100, Y = 56.6 effective RMSE xy = 88.8 slope versus dZ, curvature < 15 n = 808353 Weighted least-squares fit: Y = 4.0 + 0.477 X + 0.00063 X**2 curvature versus dZ, slope < 10 n = 2989 X=0, Y = 6.17 +/- 3.94 Weighted least-squares fit: Y = 5.8 + 1.621 X + 0.05753 X**2 Number of samples 1055286 Max dz = 800 Mean dz = 38 RMS dz = 48.3218377134 100cm = 97.2663334868 percentile value of dz Number of survey units in 1 meter = 3.208 Nominal spot spacing (in survey units) = 5 Nominal pulse density (per m2) = 1 Difference cell size = 2.5 IsData cell size = 1.25 IsData expand cells = 8 IsData shrink cells = 7 BE IsData cell size = 2.5 BE IsData expand cells = 24 BE IsData shrink cells = 24 MaxCurve = 24.69903359999 Curvature expand cells = 4 Curvature shrink cells = 3 Point density cell size = 20 Color critical value = 0.3208 Hue jump at critical value = 90