================================================== ps3313 d:\northps\block123-14dec07\ps3313.txt 15 Dec 07 13:58:06 Saturday elapsed time 00:06:50 Rectangular area = 0.875 km2 Data area = 0.874 km2 *percent double coverage = 72.612 **low-curvature dc area = 0.028 km2 1st-return RMSE, low-curvature areas = 1.191 95p = 2.406, 98p = 2.784, 99.5p = 3.291 BE RMSE = 1.918 95p = 3.825, 98p = 5.111, 99.5p = 7.605 1900044 unique returns and 0 duplicate returns 184547.698244 1327269.87 586314.68 2252.58 1 2 184550.465545 1326652.61 586252.6 2351.27 2 1 48579.246842 233129.712387 1324271.13 587515.97 3273.15 2 1 233143.503325 1327269.79 586295.41 2251.46 2 1 1062.761818 234206.265143 1327269.9 586269.11 2243.5 1 2 234220.48416 1324270.31 588914.16 3475.65 1 1 712.258497 234932.742657 1324271.15 589250.99 3366.95 1 1 234946.642056 1327269.97 588128.82 2740.03 2 1 945101 1st returns 954943 2nd returns 0 3rd returns 0 4th returns 328899 ground returns 0 blunders curvature versus slope n = 469546 X=0, Y = 40.62 +/- 20.50 Weighted least-squares fit: Y = 46.3 + 2.392 X + -0.02526 X**2 slope versus dZ, curvature < 5 n = 123535 Weighted least-squares fit: Y = 58.5 + -0.964 X + 0.01050 X**2 at X = 100, Y = 67.1 effective RMSE xy = 51.6 slope versus dZ, curvature < 15 n = 280330 Weighted least-squares fit: Y = 57.0 + -0.800 X + 0.00919 X**2 curvature versus dZ, slope < 10 n = 8863 X=0, Y = 52.31 +/- 24.57 Weighted least-squares fit: Y = 51.4 + 0.716 X + 0.06415 X**2 Number of samples 476276 Max dz = 900 Mean dz = 49 RMS dz = 75.6108457829 100cm = 90.6932114992 percentile value of dz Number of survey units in 1 meter = 3.208 Nominal spot spacing (in survey units) = 5 Nominal pulse density (per m2) = 1 Difference cell size = 2.5 IsData cell size = 1.25 IsData expand cells = 8 IsData shrink cells = 7 BE IsData cell size = 2.5 BE IsData expand cells = 24 BE IsData shrink cells = 24 MaxCurve = 24.69903359999 Curvature expand cells = 4 Curvature shrink cells = 3 Point density cell size = 20 Color critical value = 0.3208 Hue jump at critical value = 90