================================================== ps3161 d:\northps\block456-14jan08\ps3161.txt 16 Jan 08 09:29:30 Wednesday elapsed time 00:13:53 Rectangular area = 0.875 km2 Data area = 0.873 km2 *percent double coverage = 98.881 **low-curvature dc area = 0.033 km2 1st-return RMSE, low-curvature areas = 1.198 95p = 2.292, 98p = 2.631, 99.5p = 3.043 BE RMSE = 5.993 95p = 11.026, 98p = 17.798, 99.5p = 31.213 1801611 unique returns and 0 duplicate returns 324420.126401 1491124.51 595250.58 1643.38 1 1 324420.96079 1491317.37 595229.36 1641.7 2 1 921.323663 325342.284453 1492268.5 595249.62 1627.85 2 2 325356.0208 1489270.33 594092.3 3174.8 1 1 926.319313 326282.340113 1489270.43 595199.35 2349.46 1 2 326296.926389 1492268.19 592252.93 3770.18 1 1 360.99695 326657.923339 1492269.32 594973.94 1728.7 1 1 326673.362554 1489270.42 592255.07 4287.55 1 1 897978 1st returns 903633 2nd returns 0 3rd returns 0 4th returns 319296 ground returns 0 blunders curvature versus slope n = 700031 X=0, Y = 64.29 +/- 24.83 Weighted least-squares fit: Y = 70.1 + 1.318 X + -0.01387 X**2 slope versus dZ, curvature < 5 n = 138705 Weighted least-squares fit: Y = 29.8 + 0.520 X + -0.00073 X**2 at X = 100, Y = 74.4 effective RMSE xy = 107.2 slope versus dZ, curvature < 15 n = 342576 Weighted least-squares fit: Y = 28.6 + 0.728 X + -0.00194 X**2 curvature versus dZ, slope < 10 n = 2238 X=0, Y = 29.54 +/- 20.74 Weighted least-squares fit: Y = 31.9 + 1.134 X + -0.04635 X**2 Number of samples 710903 Max dz = 900 Mean dz = 67 RMS dz = 91.0549284773 100cm = 77.5212652078 percentile value of dz Number of survey units in 1 meter = 3.208 Nominal spot spacing (in survey units) = 5 Nominal pulse density (per m2) = 1 Difference cell size = 2.5 IsData cell size = 1.25 IsData expand cells = 8 IsData shrink cells = 7 BE IsData cell size = 2.5 BE IsData expand cells = 24 BE IsData shrink cells = 24 MaxCurve = 24.69903359999 Curvature expand cells = 4 Curvature shrink cells = 3 Point density cell size = 20 Color critical value = 0.3208 Hue jump at critical value = 90