================================================== ps3153 d:\northps\block456-14jan08\ps3153.txt 16 Jan 08 09:15:08 Wednesday elapsed time 00:12:24 Rectangular area = 0.875 km2 Data area = 0.874 km2 *percent double coverage = 84.844 **low-curvature dc area = 0.021 km2 1st-return RMSE, low-curvature areas = 1.502 95p = 2.703, 98p = 3.062, 99.5p = 3.460 BE RMSE = 2.198 95p = 3.980, 98p = 6.095, 99.5p = 10.856 1798217 unique returns and 0 duplicate returns 325454.228095 1468265.94 595249.55 3691.56 1 2 325466.9609 1465565.28 595251.42 4462.47 2 2 717.03462 326183.99552 1465270.59 595233.34 4606.42 1 2 326197.749247 1468269.45 592767.91 4245.42 1 1 571.880659 326769.629906 1468269.97 594879.44 3767.78 1 1 326785.282556 1465270.85 592274.18 3549.49 2 1 725.462601 327510.745157 1465270.15 592958.01 3305.89 2 2 327524.210612 1468267.81 592256.6 4224.81 2 1 893713 1st returns 904504 2nd returns 0 3rd returns 0 4th returns 311092 ground returns 0 blunders curvature versus slope n = 193393 X=0, Y = 52.70 +/- 24.72 Weighted least-squares fit: Y = 64.2 + 1.803 X + -0.02047 X**2 slope versus dZ, curvature < 5 n = 68566 Weighted least-squares fit: Y = 14.3 + 0.618 X + -0.00069 X**2 at X = 100, Y = 69.3 effective RMSE xy = 106.5 slope versus dZ, curvature < 15 n = 127023 Weighted least-squares fit: Y = 15.4 + 0.598 X + -0.00031 X**2 curvature versus dZ, slope < 10 n = 3502 X=0, Y = 19.39 +/- 10.63 Weighted least-squares fit: Y = 18.9 + 3.120 X + -0.47063 X**2 Number of samples 194276 Max dz = 900 Mean dz = 52 RMS dz = 104.990475759 100cm = 92.2671868888 percentile value of dz Number of survey units in 1 meter = 3.208 Nominal spot spacing (in survey units) = 5 Nominal pulse density (per m2) = 1 Difference cell size = 2.5 IsData cell size = 1.25 IsData expand cells = 8 IsData shrink cells = 7 BE IsData cell size = 2.5 BE IsData expand cells = 24 BE IsData shrink cells = 24 MaxCurve = 24.69903359999 Curvature expand cells = 4 Curvature shrink cells = 3 Point density cell size = 20 Color critical value = 0.3208 Hue jump at critical value = 90