================================================== ps3025 d:\northps\block456-14jan08\ps3025.txt 16 Jan 08 06:49:14 Wednesday elapsed time 00:09:59 Rectangular area = 0.875 km2 Data area = 0.874 km2 *percent double coverage = 84.858 **low-curvature dc area = 0.003 km2 1st-return RMSE, low-curvature areas = 3.147 95p = 4.115, 98p = 4.567, 99.5p = 5.162 BE RMSE = 2.220 95p = 4.543, 98p = 6.190, 99.5p = 9.546 1830087 unique returns and 0 duplicate returns 237477.911358 1393269.78 595893.91 3207.84 1 1 237491.680294 1390275.86 595256.0 2613.92 2 1 1244.128084 238735.808378 1390270.59 598088.14 2547.98 2 1 238750.161232 1393269.9 595301.67 3388.15 1 1 448.05384 239198.215072 1393269.63 597876.0 3354.85 2 1 239212.186154 1390270.1 596100.98 2394.19 1 1 1245.142509 240457.328663 1390272.19 598245.62 2564.8 1 1 240465.262555 1392075.52 598249.54 3440.06 2 1 911162 1st returns 918925 2nd returns 0 3rd returns 0 4th returns 222730 ground returns 0 blunders curvature versus slope n = 366792 X=0, Y = 45.75 +/- 24.61 Weighted least-squares fit: Y = 62.0 + 1.620 X + -0.01729 X**2 slope versus dZ, curvature < 5 n = 34076 Weighted least-squares fit: Y = 94.3 + -0.185 X + 0.00400 X**2 at X = 100, Y = 115.9 effective RMSE xy = 105.7 slope versus dZ, curvature < 15 n = 89952 Weighted least-squares fit: Y = 95.9 + -0.255 X + 0.00516 X**2 curvature versus dZ, slope < 10 n = 2599 X=0, Y = 85.57 +/- 29.13 Weighted least-squares fit: Y = 85.2 + 3.282 X + -0.19334 X**2 Number of samples 368040 Max dz = 900 Mean dz = 107 RMS dz = 135.628168166 100cm = 51.3283882187 percentile value of dz Number of survey units in 1 meter = 3.208 Nominal spot spacing (in survey units) = 5 Nominal pulse density (per m2) = 1 Difference cell size = 2.5 IsData cell size = 1.25 IsData expand cells = 8 IsData shrink cells = 7 BE IsData cell size = 2.5 BE IsData expand cells = 24 BE IsData shrink cells = 24 MaxCurve = 24.69903359999 Curvature expand cells = 4 Curvature shrink cells = 3 Point density cell size = 20 Color critical value = 0.3208 Hue jump at critical value = 90