================================================== ps3002 d:\northps\block123-14dec07\ps3002.txt 15 Dec 07 12:47:00 Saturday elapsed time 00:07:03 Rectangular area = 0.876 km2 Data area = 0.874 km2 *percent double coverage = 93.698 **low-curvature dc area = 0.018 km2 1st-return RMSE, low-curvature areas = 1.671 95p = 2.627, 98p = 2.861, 99.5p = 3.181 BE RMSE = 2.205 95p = 4.512, 98p = 6.576, 99.5p = 9.821 1879915 unique returns and 0 duplicate returns 236670.145121 1321270.0 595877.48 3263.97 1 1 236683.779358 1324268.77 595256.71 2339.43 2 1 1115.752987 237799.532345 1324269.91 598013.21 2086.37 1 1 237814.299023 1321270.39 598121.69 2935.25 1 1 624.273153 238438.572176 1321270.22 598248.1 2905.89 2 2 238452.426834 1324269.69 595930.73 2159.47 2 2 1058.951894 239511.378728 1324266.21 598250.53 2035.62 1 2 239519.0119 1322539.95 598249.46 2456.12 2 1 937013 1st returns 942902 2nd returns 0 3rd returns 0 4th returns 297766 ground returns 0 blunders curvature versus slope n = 828751 X=0, Y = 40.29 +/- 21.42 Weighted least-squares fit: Y = 49.3 + 2.186 X + -0.02290 X**2 slope versus dZ, curvature < 5 n = 149425 Weighted least-squares fit: Y = 40.1 + 0.425 X + -0.00043 X**2 at X = 100, Y = 78.3 effective RMSE xy = 105.7 slope versus dZ, curvature < 15 n = 386769 Weighted least-squares fit: Y = 40.5 + 0.399 X + 0.00040 X**2 curvature versus dZ, slope < 10 n = 12181 X=0, Y = 45.23 +/- 17.18 Weighted least-squares fit: Y = 43.8 + 0.278 X + 0.04747 X**2 Number of samples 838117 Max dz = 900 Mean dz = 63 RMS dz = 81.5352684426 100cm = 85.638282006 percentile value of dz Number of survey units in 1 meter = 3.208 Nominal spot spacing (in survey units) = 5 Nominal pulse density (per m2) = 1 Difference cell size = 2.5 IsData cell size = 1.25 IsData expand cells = 8 IsData shrink cells = 7 BE IsData cell size = 2.5 BE IsData expand cells = 24 BE IsData shrink cells = 24 MaxCurve = 24.69903359999 Curvature expand cells = 4 Curvature shrink cells = 3 Point density cell size = 20 Color critical value = 0.3208 Hue jump at critical value = 90