================================================== ps2453 d:\northps\block123-14dec07\ps2453.txt 15 Dec 07 09:36:03 Saturday elapsed time 00:07:06 Rectangular area = 0.875 km2 Data area = 0.874 km2 *percent double coverage = 99.042 **low-curvature dc area = 0.003 km2 1st-return RMSE, low-curvature areas = 0.584 95p = 1.043, 98p = 1.318, 99.5p = 1.689 BE RMSE = 2.349 95p = 4.845, 98p = 6.860, 99.5p = 10.328 2030635 unique returns and 0 duplicate returns 439592.879059 1278353.8 613254.08 804.36 2 2 439606.892719 1279264.66 616251.68 1404.77 2 1 1288.917519 440895.810238 1279269.94 616250.02 1459.05 2 1 440911.358024 1276552.59 613252.21 1548.04 1 1 353.934212 441265.292236 1276272.28 613252.02 1575.02 1 1 441280.266065 1279264.6 616251.81 1469.72 1 1 775.350201 442055.616266 1276969.76 616247.56 1900.59 2 1 442069.856369 1276276.99 613252.48 1576.61 2 1 1010430 1st returns 1020205 2nd returns 0 3rd returns 0 4th returns 84691 ground returns 0 blunders curvature versus slope n = 297163 X=0, Y = 53.53 +/- 29.67 Weighted least-squares fit: Y = 67.8 + 1.428 X + -0.01554 X**2 slope versus dZ, curvature < 5 n = 23849 Weighted least-squares fit: Y = 18.9 + -0.069 X + 0.00701 X**2 at X = 100, Y = 82.1 effective RMSE xy = 125.5 slope versus dZ, curvature < 15 n = 77687 Weighted least-squares fit: Y = 19.0 + 0.009 X + 0.00625 X**2 curvature versus dZ, slope < 10 n = 1887 X=0, Y = 18.09 +/- 6.25 Weighted least-squares fit: Y = 17.0 + 1.800 X + 0.00194 X**2 Number of samples 300016 Max dz = 900 Mean dz = 64 RMS dz = 109.539947051 100cm = 80.1570582902 percentile value of dz Number of survey units in 1 meter = 3.208 Nominal spot spacing (in survey units) = 5 Nominal pulse density (per m2) = 1 Difference cell size = 2.5 IsData cell size = 1.25 IsData expand cells = 8 IsData shrink cells = 7 BE IsData cell size = 2.5 BE IsData expand cells = 24 BE IsData shrink cells = 24 MaxCurve = 24.69903359999 Curvature expand cells = 4 Curvature shrink cells = 3 Point density cell size = 20 Color critical value = 0.3208 Hue jump at critical value = 90