================================================== ps1978 d:\northps\block456-14jan08\ps1978.txt 15 Jan 08 16:06:45 Tuesday elapsed time 00:10:43 Rectangular area = 0.875 km2 Data area = 0.874 km2 *percent double coverage = 88.410 **low-curvature dc area = 0.120 km2 1st-return RMSE, low-curvature areas = 1.159 95p = 2.410, 98p = 2.901, 99.5p = 3.448 BE RMSE = 2.254 95p = 3.882, 98p = 5.918, 99.5p = 10.837 1928944 unique returns and 0 duplicate returns 262438.080941 1576270.41 636720.38 5209.28 1 2 262443.647596 1577530.32 637250.17 4747.09 1 2 455.117462 262898.765058 1579264.55 637251.19 4618.89 1 1 262916.666397 1576275.23 634820.65 5167.36 2 1 1091.104531 264007.770928 1576273.92 634253.18 5178.48 1 2 264026.844988 1579268.79 637244.14 4670.21 2 1 354.387034 264381.232022 1579268.83 636215.97 4702.21 1 2 264395.929799 1576371.09 634252.13 5123.42 1 1 961266 1st returns 967678 2nd returns 0 3rd returns 0 4th returns 518174 ground returns 0 blunders curvature versus slope n = 618642 X=0, Y = 50.58 +/- 23.02 Weighted least-squares fit: Y = 60.6 + 1.896 X + -0.02074 X**2 slope versus dZ, curvature < 5 n = 274075 Weighted least-squares fit: Y = 12.2 + 0.305 X + 0.00440 X**2 at X = 100, Y = 86.7 effective RMSE xy = 134.9 slope versus dZ, curvature < 15 n = 459655 Weighted least-squares fit: Y = 12.0 + 0.369 X + 0.00382 X**2 curvature versus dZ, slope < 10 n = 9062 X=0, Y = 16.38 +/- 8.37 Weighted least-squares fit: Y = 16.8 + 0.385 X + 0.02469 X**2 Number of samples 622743 Max dz = 900 Mean dz = 45 RMS dz = 63.835726674 100cm = 92.2056129093 percentile value of dz Number of survey units in 1 meter = 3.208 Nominal spot spacing (in survey units) = 5 Nominal pulse density (per m2) = 1 Difference cell size = 2.5 IsData cell size = 1.25 IsData expand cells = 8 IsData shrink cells = 7 BE IsData cell size = 2.5 BE IsData expand cells = 24 BE IsData shrink cells = 24 MaxCurve = 24.69903359999 Curvature expand cells = 4 Curvature shrink cells = 3 Point density cell size = 20 Color critical value = 0.3208 Hue jump at critical value = 90