================================================== ps1933 d:\northps\block123-14dec07\ps1933.txt 15 Dec 07 06:50:59 Saturday elapsed time 00:07:03 Rectangular area = 0.875 km2 Data area = 0.874 km2 *percent double coverage = 75.636 **low-curvature dc area = 0.019 km2 1st-return RMSE, low-curvature areas = 1.011 95p = 2.175, 98p = 2.567, 99.5p = 3.003 BE RMSE = 2.633 95p = 4.500, 98p = 8.326, 99.5p = 16.294 1994606 unique returns and 0 duplicate returns 422799.574156 1300263.68 637250.37 2227.09 1 1 422814.441469 1299157.06 634252.17 2012.73 2 1 495.981469 423310.422938 1297438.33 634252.01 2487.4 2 2 423325.246372 1300263.45 637251.43 2230.55 2 1 1171.86734 424497.113712 1299329.68 637251.84 2407.26 1 2 424512.272353 1297271.99 634252.87 2561.7 2 1 10121.175651 434633.448004 1297270.2 635753.57 2730.57 2 1 434639.955119 1297512.19 637251.65 2722.39 1 2 994446 1st returns 1000160 2nd returns 0 3rd returns 0 4th returns 357699 ground returns 0 blunders curvature versus slope n = 574649 X=0, Y = 33.37 +/- 17.58 Weighted least-squares fit: Y = 37.8 + 2.606 X + -0.02710 X**2 slope versus dZ, curvature < 5 n = 100422 Weighted least-squares fit: Y = 7.7 + 0.954 X + -0.00234 X**2 at X = 100, Y = 79.7 effective RMSE xy = 124.7 slope versus dZ, curvature < 15 n = 265567 Weighted least-squares fit: Y = 8.5 + 0.966 X + -0.00231 X**2 curvature versus dZ, slope < 10 n = 16160 X=0, Y = 16.30 +/- 9.55 Weighted least-squares fit: Y = 14.5 + 1.826 X + 0.04497 X**2 Number of samples 581300 Max dz = 900 Mean dz = 46 RMS dz = 72.3187389271 100cm = 89.645621882 percentile value of dz Number of survey units in 1 meter = 3.208 Nominal spot spacing (in survey units) = 5 Nominal pulse density (per m2) = 1 Difference cell size = 2.5 IsData cell size = 1.25 IsData expand cells = 8 IsData shrink cells = 7 BE IsData cell size = 2.5 BE IsData expand cells = 24 BE IsData shrink cells = 24 MaxCurve = 24.69903359999 Curvature expand cells = 4 Curvature shrink cells = 3 Point density cell size = 20 Color critical value = 0.3208 Hue jump at critical value = 90