
2015 OLC Chelan FEMA

quantumspatial.com

Data collected for:

Department of Geology and Mineral Industries

800 NE Oregon Street Suite 965 Portland, OR 97232

Prepared by:

Quantum Spatial

421 SW 6th Avenue Suite 800 Portland, Oregon 97204 phone: (503) 505-5100 fax: (503) 546-6801

Contents

6 - Accuracy

- 9 Density
- 12 Appendix

2 - Project Overview

3 - Aerial Acquisition 3 - LiDAR Survey

4 - Ground Survey

4 - Monumentation 5 - Ground Survey Points (GSPs)

5 - Land Cover Class

6 - Relative Accuracy

7 - Vertical Accuracy

8 - Supplemental and Consolidated Vertical Accuracies 9 - Pulse Density

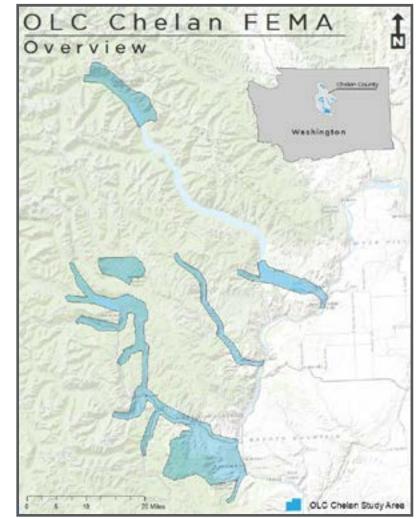
10 - Ground Density

12 - PLS Certification

Overview

Project Overview

Quantum Spatial has collected Light Detection and Ranging (LiDAR) data for the Oregon LiDAR Consortium (OLC) Chelan FEMA study area. This study area is located in Chelan County, in central Washington.


The collection of high resolution geographic data is part of an ongoing pursuit to amass a library of information accessible to government agencies as well as the general public.

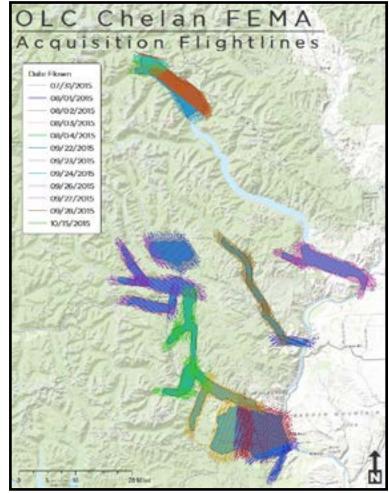
In July 2015 QSI employed remote-sensing lasers in order to obtain a total area flown of 215,029 acres. Settings for LiDAR data capture produced an average resolution of at least eight pulses per square meter.

Final products created include RGB extracted (from NAIP imagery) LiDAR point cloud data, one-meter digital elevation models of highest hit and bare earth ground models, one-meter density rasters, one-half-meter intensity rasters, study area vector shapes, and corresponding statistical data. Final deliverables are projected in UTM Zone 10.

OLC Chelan FEMA Data		
LiDAR Acquisition Dates	7/31/2015 - 10/15/2015	
Area of Interest	201,078 acres	
Date Extent	215,029 acres	
Projection	Universal Transverse Mercator (UTM) 10 North	
	NAD83 (2011), Epoch 2010.00 NAVD88 (Geoid 12A)	

OLC Chelan Project Overview Map

LiDAR Survey

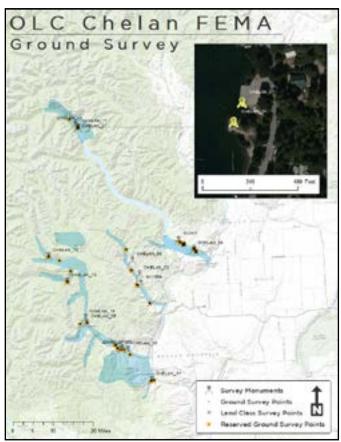

The LiDAR survey occurred between July 31, 2015 and October 15, 1015 utilizing a Leica ALS80 mounted in a Cessna Grand Caravan. The systems were programmed to emit single pulses at around 369 kHz and flown at 1,500 m AGL, capturing a scan angle of 15 degrees from nadir. These settings were developed to yield points with an average native density of greater than eight pulses per square meter over terrestrial surfaces.

The LiDAR sensor operators constantly monitored the data collection settings during acquisition of the data, including pulse rate, power setting, scan rate, gain, field of view, and pulse mode. For each flight, the crew performed airborne calibration maneuvers designed to improve the calibration results during the data processing stage. They were also in constant communication with the ground crew to ensure proper ground GPS coverage for data quality. The LiDAR coverage was completed with no data gaps or voids, barring non-reflective surfaces (e.g., open water, wet asphalt). All necessary measures were taken to acquire data under good conditions (e.g., minimum cloud decks) and in a manner (e.g., adherence to flight plans) that prevented the possibility of data gaps. All QSI LiDAR systems are calibrated per the manufacturer and our own specifications, and tested by QSI for internal consistency for every mission using proprietary methods.

Aerial Acquisition

To solve for laser point position, an accurate description of aircraft position and attitude is vital. Aircraft position is described as x, y, and z and was measured twice per second (two hertz) by an onboard differential GPS unit. Aircraft attitude is described as pitch, roll, and yaw (heading) and was measured 200 times per second (200 hertz) from an onboard inertial measurement unit (IMU).

OLC Chelan FEMA LiDAR Acquisition Specs		
Sensor	Leica ALS80	
Aircraft	Cessna Grand Caravan	
Acquisition Date Range	7/31/2015 - 10/15/2015	
Coverage	100% Overlap with 60% Sidelap	
Field of View (FOV)	30 degrees	
Targeted Pulse Density	≥8 PPSM	
Pulse Rate	369 kHz	
Speed	140 kts	



Project Flightlines

Ground Survey

Ground Survey

Ground control surveys, including monumentation, aerial targets, and ground survey points (GSPs) were conducted to support the airborne acquisition. Ground control data are used to geospatially correct the aircraft positional coordinate data and to perform quality assurance checks on final LiDAR data products. See the table to the right for specifications of equipment used.

Ground survey map of the 2015 OLC Chelan FEMA study area.

Monument Accuracy		
FGDC-STD-007.2-1998 Rating		
St Dev NE	0.050 m	
St Dev z	0.050 m	

Monumentation

Ground control surveys, including monumentation, and ground survey points (GSPs), were conducted to support the airborne acquisition. Ground control data were used to geospatially correct the aircraft positional coordinate data and to perform quality assurance checks on final LiDAR data.

The spatial configuration of ground survey monuments provided redundant control within 13 nautical miles of the mission areas for LiDAR flights. Monuments were also used for collection of ground survey points using real time kinematic (RTK) and post processed kinematic (PPK) survey techningues. Monument locations were selected with consideration for satellite visibility, field crew safety, and optimal location for GSP coverage. QSI utilized three existing monuments and established 12 new monuments for the OLC Chelan FEMA LiDAR project. New monumentation was set using $5/8^{\circ}$ x 30" rebar topped with stamped 2-1/2" aluminum caps. QSI's professional land surveyor, Christopher Glantz (WA PLS #48755) oversaw and certified the establishment of all monuments.

Monuments utilized during the ground survey of the OLC Chelan FEMA project.

PID	Latitude	Longitude	Ellipsoid Height (m)	NAVD88 Height (m)
CHELAN_02	47° 46' 30.17484"	-120° 21' 07.99430"	727.357	746.088
CHELAN_03	47° 49' 31.34566"	-120° 23' 08.44008"	959.240	977.753
CHELAN_04	47° 51' 28.98625"	-120° 03' 24.83358"	406.772	425.923
CHELAN_05	47° 36' 21.64406"	-120° 38' 27.89408"	363.875	382.689
CHELAN_07	48° 18' 38.94977"	-120° 39' 27.24987"	319.073	336.646
CHELAN_08	48° 19' 19.22772"	-120° 40' 17.57732"	318.916	336.499
CHELAN_09	47° 30' 15.14715"	-120° 25' 34.16611"	219.715	239.085
CHELAN_10	47° 37' 27.73931"	-120° 38' 48.83811"	353.176	371.961
CHELAN_11	48° 18' 38.31184"	-120° 39' 27.65298"	318.866	336.440
CHELAN_12	47° 50' 56.88530"	-120° 50' 06.83755"	555.351	573.677
CHELAN_13	47° 45' 22.56350"	-120° 44' 22.30126"	587.397	605.951
CHELAN_14	47° 23' 31.39259"	-120° 18' 17.28827"	250.275	269.894
JENNY_GPS98	47° 30' 27.32185"	-120° 27' 33.29900"	361.305	380.628
SX1569	47° 44' 26.23812"	-120° 20' 39.29344"	768.144	786.968
SX1611	47° 53' 36.07428"	-120° 08' 05.57169"	353.580	372.517

Coordinates are on the NAD83 (2011) datum, epoch 2010.00. NAVD88 height referenced to Geoid12A.

To correct the continuously recorded onboard measurements of the aircraft position, QSI concurrently conducted multiple static Global Navigation Satellite System (GNSS) ground surveys (1Hz recording frequency) over each monument. During post-processing, the static GPS data were triangulated with nearby Continuously Operating Reference Stations (CORS) using the Online Positioning User Service (OPUS) for precise positioning. Multiple independent sessions over the same monument were processed to confirm antenna height measurements and to refine position accuracy. The table on the previous page provides the list of monuments used.

Ground Survey Points (GSPs)

Ground Survey Points (GSPs) are collected using Real Time Kinematic (RTK) survey techniques. For RTK surveys, a base receiver is positioned at a nearby monument to broadcast a kinematic correction to a roving receiver. All GSP measurements are made during periods with a Position Dilution of Precision (PDOP) no greater than 3.0 and in view of at least six satellites for both receivers. Relative errors for the position must be less than 1.5 centimeters horizontal and 2.0 centimeters vertical in order to be accepted.

In order to facilitate comparisons with high quality LiDAR data, GSP measurements are not taken on highly reflective surfaces such as center line stripes or lane markings on roads. GSPs are taken no closer than one meter to any nearby terrain breaks such as road edges or drop offs. GSPs were collected within as many flight lines as possible; however, the distribution depended on ground access constraints and may not be equitably distributed throughout the study area.

Trimble R10

Land Cover Class

shown in the table below.

In addition to ground survey points, land cover class control points were collected throughout the study area. Individual accuracies were calculated for each land cover type to assess confidence in the LiDAR derived ground models across land cover classes. Land cover types and descriptions are

Field surveyor collecting land class RTK points.

Land Cover Type	e Land Cover Code		Description	
Shrub	SHRUB	Area	s dominated by shrubs	
Short Grass	SHORT GRASS	Areas	dominated by short grass	
Tall Grass	TALL GRASS	Areas	eas dominated by tall grass	
Ground survey instrumentation				
	Instrum	entation		
Receiver Model	Antenna		OPUS Antenna ID	
Trimble R7 GNSS	Zephyr GNSS Geodetic Model	2 RoHS	TRM57971.00	ç

Land cover descriptions of check points taken for the OLC Chelan FEMA study area.

Integrated Antenna R10

Static. Rover

TRMR10

Accuracy

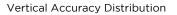
Relative Accuracy

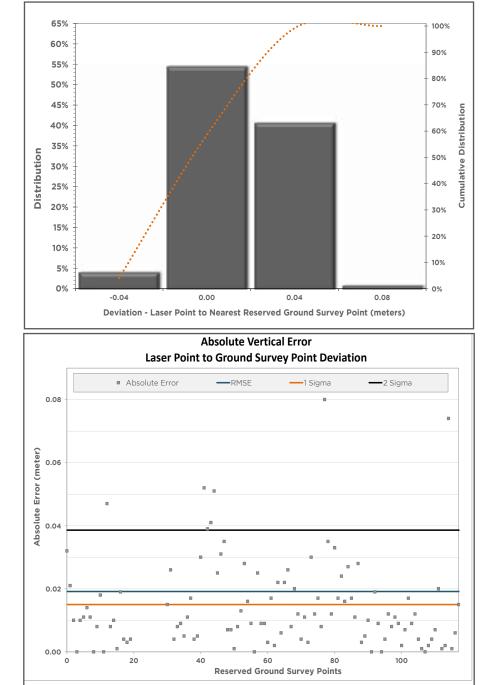
Relative accuracy refers to the internal consistency of the data set and is measured as the divergence between points from different flightlines within an overlapping area. Divergence is most apparent when flightlines are opposing. When the LiDAR system is well calibrated the line to line divergence is low (<10 centimeters). Internal consistency is affected by system attitude offsets (pitch, roll, and heading), mirror flex (scale), and GPS/IMU drift.

Relative accuracy statistics are based on the comparison of 805 flightlines and over 12,496,440,337 LiDAR points. Relative accuracy is reported for the entire study area.

Relative Accuracy Calibration Results	
Project Average	0.056 m 0.185 ft.
Median Relative Accuracy	0.053 m 0.175 ft.
1σ Relative Accuracy	0.060 m 0.197 ft.
2σ Relative Accuracy	0.085 m 0.279 ft.

Vertical Accuracy

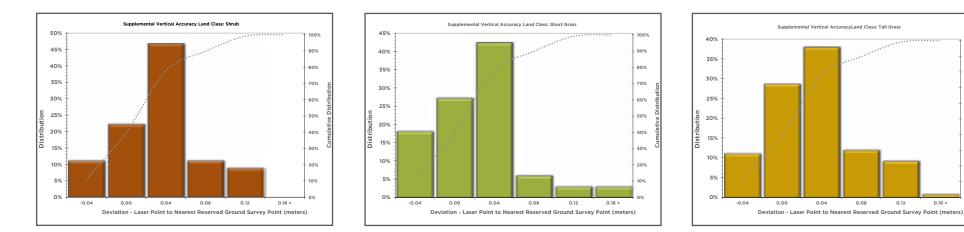

Vertical Accuracy reporting is designed to meet guidelines presented in the National Standard for Spatial Data Accuracy (NSSDA) (FGDC, 1998) and the ASPRS Guidelines for Vertical Accuracy Reporting for LiDAR Data V1.0 (ASPRS, 2004). The statistical model compares known ground survey points (GSPs) to the closest laser point. Vertical accuracy statistical analysis uses ground survey points in open areas where the LiDAR system has a "very high probability" that the sensor will measure the ground surface and reports the fundamental vertical accuracy value (FVA=1.96*RMSE).


meters.

Vertical A

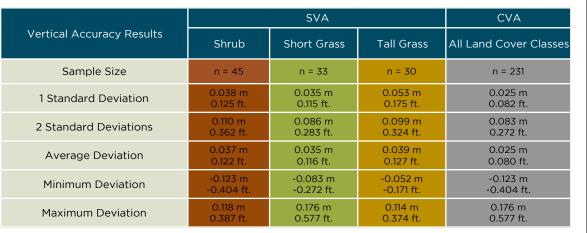
Sample Size FVA (RMSE* Root Mean Sc 1 Standard De 2 Standard De Average Devi Minimum Dev Maximum Dev

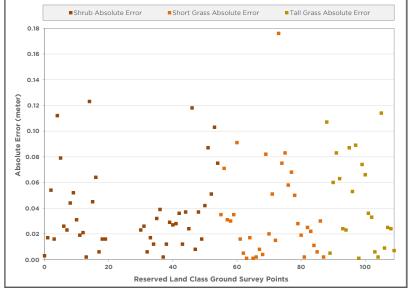
Accuracy

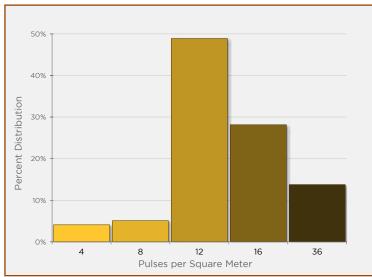

For the OLC Chelan FEMA study area, a total of 2,230 GSPs were collected. An additional 123 reserved ground survey points were collected for independent verification, resulting in a fundamental vertical accuracy (FVA) of 0.038

ccuracy Results	Hard Surface
(n)	n = 123 GSPs
.96)	0.038 m (0.123 ft.)
quare Error	0.019 m (0.063 ft.)
eviation	0.015 m (0.049 ft.)
eviations	0.039 m (0.127 ft.)
ation	0.014 m (0.044 ft.)
viation	-0.080 m (-0.262 ft.)
viation	0.052 m (0.171 ft.)

Accuracy


Supplemental and Consolidated Vertical Accuracies


QSI also assessed absolute vertical accuracy for the OLC Chelan FEMA study area, using Supplemental Vertical Accuracy (SVA) and Consolidated Vertical Accuracy (CVA) reporting. SVA compares known ground survey point data within individual land cover class categories to the triangulated ground surface generated by the LiDAR points. CVA, rather, compares known ground survey points within all land cover classes to the triangulated ground surface generated by LiDAR points. SVA and CVA are measures of the accuracy of LiDAR point data in various land cover classes where the LiDAR system has a high probability of measuring the ground surface and is evaluated at the 95th percentile, as shown in the table below.

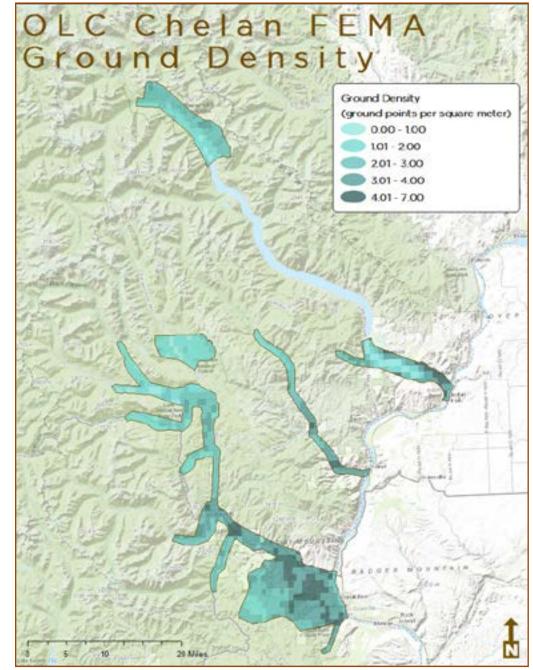

Pulse Densit
Some types of may return few Therefore, the native density and water boo been calculate and ground-cla

0.16



Pulse Density Distribution

itν


Density

surfaces (e.g., dense vegetation, water) wer pulses than the laser originally emitted. delivered density can be less than the and vary according to terrain, land cover, dies. Density histograms and maps have ed based on first return laser pulse density lassified laser point density.

Average Pulse Density per 0.75' USGS Quad (color scheme aligns with density chart).

Average Pulse Density	Average Ground Density
Pulses per square meter	Ground points per square meter
12.34	2.65 0
Pulses per square foot	Ground points per square foot
1.15	0.25

Ground Density

Ground classifications were derived from ground surface modeling. Further classifications were performed by reseeding of the ground model where it was determined that the ground model failed, usually under dense vegetation and/or at breaks in terrain, steep slopes, and at tile boundaries.

> 3 4 7 Ground Points per Square Meter

Ground Density Distribution

1

2

Average Ground Point Density per 0.75' USGS Quad (color scheme aligns with density chart).

40% ·

30%

20%

10%

0%

[Page Intentionally Blank]

Appendix PLS Certification

WSI, a Quantum Spatial company, provided LiDAR Services for OLC Chelan project as described in this report.

I, John English, have reviewed the attached report for completeness and herby state that it is a complete and accurate report of this project.

3/18/2016

John English Project Manager WSI, a Quantum Spatial Company

I, Christopher Glantz, being duly registered as a Professional Land Surveyor in the state of Washington, say that I hereby certify the methodologies and results of the attached LiDAR project, and that Static GNSS occupations on the Base Stations during airborne flights and RTK survey on hard-surface and GSP's were performed using commonly accepted Standard Practices. Field work conducted for this report was conducted between July 14, 2015 and October 15, 2015. Accuracy statistics shown in the Accuracy Section of this Report have been review by me and found to meet the "National Standard for Spatial Data Accuracy".

3/18/2016

Christopher Glantz, PLS Land Survey Manager WSI, a Quantum Spatial Company

