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Forest remote sensing

Today’s lecture:
Mars spectroscopy
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Next lecture — Forest remote sensing (Guest: Dr. Van Kane,
CFR)






MARS SPECTROSCOPY

* Rovers and satellites are the most common
ways that we can observe the Martian surface

Rovers offer:
Very detailed geology
Chemistry, mineralogy, and imagery of rocks and soils
Limited mobility and range

Satellites offer:

Wide spatial coverage (regional and global)
Context for rover observations

Limited resolution and detection capability




MARTIAN ORBITAL SPECTROMETERS

VISIBLE-NEAR INFRARED

— CRISM (COMPACT RECONNAISANCE IMAGING
SPECTROMETER FOR MARS)

* 0.36 -3.92 um range, 16-20 m/pixel
* Good for detection hydrated and iron-bearing minerals

THERMAL

— TES (THERMAL EMISSION SPECTROMETER)
* 6-50 mm range, 3 km/pixel
* Good for detecting bulk mineralogy (i.e. basalt vs. dust)

— THEMIS (THERMAL EMISSION IMAGING SYSTEM)

* 10 infrared spectral bands between 6-15 mm, 100 m/pixel
* Used to detect large mineralogical differences between units



ANTONIADI CRATER
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The Antoniadi Crater region has evidence of:
- Stable long-term water on ancient Mars
- Past volcanic activity
- Minerals (clays, quartz/silica) that indicate a
hospitable and stable environment for life

ESA/DLR /FU Berlin (G.Neukum)



Quartzofeldspathic
detections

Quartzofeldspathic units —
ey e Rocks high in quartz and feldspar,
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QUARTZOFELDSPATHIC DETECTION
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HYDRATED MINERALS
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Ehlmann et al., 2009

Identification of hydrous alteration products with CRISM:
hydrated silica, phyllosilicates (smectite, chlorite), and zeolites (analcime)



MOTIVATION FOR STUDYING
ANTONIADI CRATER

Locally

— Why do we find these minerals (quartzofeldspathic unit,
hydrated silica and phyllosilicates) together?

— What does their location imply for past water,
temperature, or life?

Regionally
— How do these deposits correspond to nearby Nili Fossae?

Globally

— Are these deposits similar to other mineral detections on
the planet?



DESCRIPTION OF EXPOSURES:
QUARTZOFELDSPATHIC/HYDRATED SILICA UNITS

All exposures of quartzofeldspathic material are found
coincident with hydrated silica

Silica-bearing units are in thin, mobile, dune-forming deposits
in topographic lows

Intensity of detection increases away from source, suggesting
a lag deposit

In shallowest fractures, only hydrated silica (no phyllosilicates)
is detected, indicating shallower burial



SILICA-BEARING UNITS

2.25 um band depth

Quartzofeldspathic detection Hydrated silica detection
(Bandfield et al., 2004)

Quartzofeldspathic and hydrated silica units are co-located



SILICA-BEARING UNITS
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Hydrated silica detection
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Quartzofeldspathic detection .
(Bandfield et al., 2004)
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Quartzofeldspathic and hydrated silica units are co-located



SILICA-BEARING UNITS

Hydrated silica detection R N A

2.25 um band depth

Hydrated silica/quartzofeldspathic
units are associated with mobile,
dune-forming units




2.25 um band depth [GRISM]
(hydrated silica detection)

A

There is no obvious source
stratum, and silica detection
intensifies downslope, suggesting
that this is a lag deposit




Laboratory Reflectance (offset for clarity)
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HYDRATED SILICA

DOMINANT
SILICA MORPHOLOGY
PHASE

Nano- and microspheras
2
—
20 um

Opal -A

 Forms under low temperature
(<150°C) conditions on Earth,
and typically found in near-surface
environments (Roberts et al., 1974)

Opal -A/CT

* Alters to microcrystalline quartz
(chalcedony) in the presence of water
(Lynne et al., 2005) in relatively short time
scales; ~400 Ma (7osca and Knoll, 2009)

Opal - C1-'-“

Opal-C
Quartz
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microcrystals

Lynne et al., 2005




Lab spectra
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Ratioed CRISM I/F

QUARTZ + HYDRATED SILICA = CHALCEDONY
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Chalcedony indicates higher degree of alteration than
opaline silica and locally sustained water (up to 400 Ma) in
moderate (<150°C) temperatures



DESCRIPTION OF EXPOSURES:
PHYLLOSILICATES

— CRISM detections of phyllosilicates are found mostly in
megabreccia blocks

— Clays also associated with layered knobs (possibly ancient
layered impact breccias)

— Detections of phyllosilicates are not mixed with hydrated
silica



PHYLLOSILICATES

— Most exposures are in impact breccia clasts in crater central peaks and floors
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Indicates that alteration pre-dates and is exposed by the impact event



Ratioed I/F
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2.31 um band depth

PSP_006673_2000




PSP_003706_2000

Layered knobs

PSP_003706_2000



PHYLLOSILICATES IN LAYERED KNOBS
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ANTONIADI CROSS-SECTION
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SW Crater Blue = hydrated silica

Nli Crater

Melosh, 1989

Centrally uplifted rocks are sourced from the deepest strata




Hydrated silica is emerging from the
walls, not from the central peak

Phyllosilicates exposed in the central
peak are mostly detected in pre-
existing layered terrain
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SOUTHWEST CRATER

Hydrated silica is eroding from the
central peak, instead of the walls

Phyllosilicates are found entirely in

isolated blocks ringing the central peak,
excavated during the impact process
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NILI FOSSAE

REGIONAL CONTEXT:
NILI FOSSAE

CRATER

Olivine-rich basalt/carbonate unit

Olivine-bearing unit is inferred to be
impact melt from nearby Isidis impact

Mustard et al., 2009



NILI FOSSAE AND ANTONIADI CRATER

* Pre-Isidis phyllosilicate-bearing basement is consistent
between sites

However,

— Isidis contains an olivine/carbonate- and kaolinite-bearing
layer, denoting a second and more extensive diagenetic
event

— Antoniadi has a secondary-quartz-bearing unit, also
suggesting extended periods of alteration

Differences in protolith composition can account for these
differing mineralogical expressions of alteration



GLOBAL CONTEXT

Unique detection of silica

— High-silica deposits form in two ways:
1) Dissolution and reprecipitation of silica in an alkaline

environment
Dissolution of everything else in an acidic environment, leaving

silica behind
— Hydrated silica is not associated with sulfates, unlike
identifications at Valles Marineris (wiiiken et al., 2008) and Gusev

Crater (Squyres et al., 2008)
— Sulfate deposition indicates alteration in an acidic
environment (Formation #1), clay deposition suggests

alkaline (Formation #2)

2)



GLOBAL CONTEXT

Uniqgue detection of silica

— VNIR spectra show greater alteration than
elsewhere on Mars
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OUTSTANDING QUESTIONS

DO WE DETECT ZEOLITES?
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OUTSTANDING QUESTIONS

ARE WE ALSO DETECTING CARBONATES?
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CONCLUSIONS

e Coincident with prior quartzofeldspathic detections, we
detect chalcedony (in TES/CRISM) suggesting sustained
local water-rock contact, and greater alteration than for
other hydrated silica detections elsewhere on Mars

* We construct a regional stratigraphy with a Noachian
phyllosilicate-bearing basement beneath a silica-bearing
unit, suggesting multiple periods of wetting and alteration

* The stratigraphy is similar to nearby Nili Fossae, sharing
both a phyllosilicate-bearing basement beneath a more
altered layer suggesting multiple stages of wetting/
alteration



