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ACTIVE AIRBRGRNE INFRARED LASER SYSTEM FOR IDENTIFICATION QF SURFACE ROCK AND MIMNERALS

Anme  B. Kﬁhlal, Michael S. Shumatel and David E. Nashz

et Propulsion Laboratory, (alifornia Institute of Techriclogy, Pasadena, CA 91109

EUﬂiverEity of Cincinnati, Cinecinmati, Ohio 45221. Work performed while at JPL. as. an NRC-RRA

Abstract. Emissivity and reflectivity in the
thermal infrared spectral region (8~13 m) may
be used to discriminate among rocks and mine-
rals. Although considerable success has been
acthieved in remote sensing classification of rock
types based on emissivity measurements made with

NASA's Thermal TInfrared Mulrispectral  Scanner
(TIMS), -classificatign based on reflectivity
offers several advantapes: much narrower band-

widths are wused, higher signal to noise ratios
are possible, and measurements are little affeet-
ed by surface temperature. As a demonstration,
an airborne (0, laser instrument was flowd along
the margin of Death Valley, California. Measure-
mente of spectral reflectance collected with this
device were compared with emlssivity measurements
made wlith the TIMS. Data from either instrument
provided the means for recognizing boundaries be-
tween geologic uwnits including different rock
types and fan surfaces of different ages.

Introduction

Rémote sensing provides a méans for discrimin—
ating among rock and mineral types and identify-
ing thei on the basis of fhelr specteral charac—
teristics (sée Coetz and Rowan [1980] and thelr
references) . The thermal infrared spectral
region (8+13 m) contains the maximim thermal
emission at 4dmbient terrestrial temperatures, is
A good -atmospheriec window, and containg the
important reststrahlen bands for silicates ($i-0
stretching vibrations}. This spectral region has
been viewed In emissfon using passive airborne
fsltispectral sdcanners with good success [Vincent
et al., 1972; Kahle and Rowan, 1980: and Kahla
and Goetz, 1983]. However, the passive technique
is presently limited by the broad spectral band-
widths (0.5-1.0 mm) rnecessary to achiéve an
acceptable signal-to-noise ratio, by uncertain—
ties Introduced by the presence of atmospheric
gases, and by the strong dependence of emission
on temperature. These limitations may be avoided
by active laser remote sensing techniques which
measure. reflectaricer rather thail emittance. A
typical laser system bandwidth is less than 10-°
pme A number of laser wavelengths are available
which can be selected to minimize interferencs
for geologic applications. The emisgivity of
most geologic materldls wvaries between 0.7 dnd
1.0 in the wavelength range from 8-12 m while
reflectivity varies between 0.0 and 0.3, Thuas
the &absolute range of the reflectance 1s nuch
larger than for emissivity and it is therefsre
inherently more sensitive.

JPL  lias developed a laser absorption spec-

This paper ds not subject to U.5. copyright. Pub-
lished in 1284 by the American Geophysical Union.

Paper number 4L6315.

inferred froam the twoe data sets.

trometer (LAS) for temote measurement of atmos-
pheric gases [Shumate er al., 1981, 1982]. The
system uses two (05 infrared laser transmifter/
recelver sgystems mounted in a small aircraft to
measare the two—way transmittance between the
aircraft and the ground. Heterodyne detection
techniqués are used to measure the laser radia-
tion backscattered from the ground and distin-
guish it frem thermal background rddiation. The
LAS system respsnds to the effects of both atmos-
pheric absorption and surface reflectdnce wvaria-
tions. Wieseémarnn et al. [1978] have suggested
the use of an instrument of this type for identi-
fication of surface materials.

Te demonstrate this application, the LAS was
flown over a site in Death Valley, California in
July 1983 wheré image data for the passive Ther-~
mal Infrared Multispectral Scanner (TIMS) acquir—
ed in August 1982 was already under evalua-
tion. Tata from rhe LAS flight and data extract~
ed from the TIMS image fer the same flight track
were compared to determine the correlation he-
twaen the enmissivity and the reflectivity as
The LAS wave-—
lengths were selected so as to look for che broad
silicate reststrahlen band near 9.2 ym. Flgure 1
shows laborakory reflectance spect¥a of rock sam—
ples from Death Valley, with the location of the
TIMS bands 3 and 5 and the selected LAS hands.

Imstrument Description

The two LAS CO0p laser transmitter-heterodyre
recelver systems transmit beams having less than
] mrad divergence, aimed at the same point on the
surface below the aireraft. The operating wave-
length of e€dch system is independently selectable
betweeri 9.1 and 10.8 um. The wavelerigths 9.23 and
10.27 m were selected to achlifeve good geologic
discrimination with a wminimum of losé in the
atmosphere. The signald recofded by the instiu-
merit are proportional to the intensity of the bi-
directional spectral reflectance signal returned
from the surface. The major contribution to the
ratic of the twd received signals is the differ~
ential ‘abforpticn which occurs in the surface
material. Trom an altitude »f 3 ke, the instru-
ment footprint was approximately 3 m by 50 m with
the longer axls oriented along the flight path.
Cround track photographs were used to locate the

path followed by the TLAS laser heams o fopogra—
phic maps, gedlogic maps, and TIMS Images.

Ceclogic Setting

The flight line wes 35 km long with a bearing
of 350°, along the western edza of Death Valleywy
where larga alluvial fans descend from the Pana-
mint Range to the west. Vegetation is sparse or
absent. The bedrock units are Cambrian and Ofdo=
vician dolomites with some shale, limestone, and
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Fig. 1. Laboratory reflectance spectra of var-
ious rocks, and spectral range of TIMS (stippled)
and LAS (solid lines) data used here.

quartzite and with scattered outcrops of Tertiary
volcanics, mainly rhyolitic tuffs and basalt.
Some of the alluvial fans have a fairly local
source in the primarily carbonate sedimentary
rocks. The source of other fans is higher in the
Panamint Range and includes much more quartzite
and shale. Hunt and Mabey [1966] mapped the bed-
rock geology and the age units of the alluvial
fans. They differentiate three major fan age
units in the area of the test flight - Qgo, Qg3
and Qg,, with Qg% being the oldest. The composi-
a

tion of a given fan varies with age due to chang-
ing source area and differential weathering and

erosion. The development of desert varnish and
desert pavement on the fans is also a function of
age and erosional history.

Data Processing and Interpretation

The reflected signal from the lasers was re-
corded on a strip chart. The chart was later
digitized at an interval corresponding to approx-
imately 16 m on the ground. Figure 2 shows a
plot of the reflectance data for each laser and
the ratio between them as a function of distance
along the flight line, for a typical 6 km segment
of the flight line (between km 17 and 23, Figure
4) e Both rock-type boundaries and boundaries
between age units on the alluvial fans are easily

recognizable on this plot. Although the age
units are not specifically identified, their

boundaries, as seen on maps and/or air photos,
generally correspond to the rapid changes in sig-
nal level on the scale of tens of meters.

TIMS bands 1 (8.1 - 8.5 mm), 3 (8.9 - 9.3 m)
and 5 (10.2 - 10.9 um), have been used to dis-
criminate boundaries of some major rock units as
well as the age and compositional units of the
alluvial fans (described in the accompanying
paper, Gillespie et al., 1984). The silicate
fans could be subdivided into units having Trail
Canyon, Blackwater Canyon, or Tucki Wash ori-
gin. Figure 3 is a map derived from the TIMS
data showing some of the compositional units that
could be discriminated by TIMS, but not showing
the higher-spatial-frequency age units.

The LAS flight path was registered to the TIMS

Infrared laser remote sensing

) -

w200 0.9 =92 um
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Fig. 2. Normalized reflectance for the 9.23 m

and 10.27 ym @, laser systems and their ratio
(9.23 m/10.27 mm) for a 6 km segment of the
flight line A = B shown in Fig. 3.

image. Emissivity data were extracted from each
pixel of the TIMS image from bands 3 and 5, the
TIMS bands closest to the wavelengths of the
lasers. The emissivity of band 3 was ratioced to
that of band 5 and the result was smoothed using
a running average algorithm and plotted along
with the ratioed laser reflectivity data (Figure
4). The two plots show a high negative correla-
tion (r = -0.90). As stated in Kirchoff's Law,
the emissivity should equal one minus the reflec-
tivity. Also indicated in the center of Figure 4
are the geologic units from Figure 3. BPoth TIMS
and LAS reveal essentially the same compositional
information about the surface materials, although
some systematic differences due to the non-
coincidence of wavelengths are noted.

To further assess the abilities of the TIMS
and LAS instruments to discriminate among various
targets of geologic interest, the flight path was
divided into geologic units (Table 1). These
units were selected by subdividing the units map-
ped by Hunt and Mabey [1966] into subunits iden-
tifiable from the TIMS imagery or from photo-
graphs collected by the LAS boresight camera.
Both instruments were able to discriminate among
the different ages of the fan surfaces as well as
among fans having different source materials, and
were also able to distinguish most other identi-
fiable geologic units along the flight path.

MAP EXPLANATION

Carbonate rocks and
ol fans (dominantly
dolomite)

Saline playa and lake
sediments

Breccias, rocks and
fans of mixed
composition

7 Intermediate rhyolitic
| volcanic rocks and

Fan gravels of Tucki
Wash

Fan gravels of
Blackwater Wash and
Trail Canyon

Basaltic lava g

Quartzite

Fan gravels of mixed
Blackwater, Tucki,
and Trail source

Argillaceous bt
sedimentary rocks
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TABLE 1, Mean LAS and TIMS ratios for
Geologic, Units

L

of R: Vincent of Geospectra.

Mean Ratios Mean Ratios
Symbol Geologic Unit LAS. TIMS
X o] X o
Qeabw l Silicaté Fan: .1.178 & 21 0.884 + .03
Qg4bw » Trail, 1.036 £ .11 1.909 + .02
Quibw §. Blackwater 1.030 + .11  0.922 + .01
Mean 1.081 1.905
Qgom j  Fan: 0.712 £ .58 .985 &+ .01
Qgam Mixed Source 0.712 & 03 0.983 & .01
Qg4 0.604 £ .01 0.99% + .00
Mean 0.676 0.988
Qgsc 0.485 & 02 }.00L & .0I
Qgac » (arbomate Fan 0.481 + .03 1.018 £ .00
Qgse ) 0.517 1+ .06 1.005 £ 0%
Mean 0494 1.005
Qg ot 0,891 £ .08  0.941 & .02
Qggt > Silicaté Fan: 0.758 + .02 0.963 £ .01
Qg it Tucki 0.796 £ .07  0.959 + .01
Mean 0.815 0.954
v Rhyolitic Rock 0:552 + .06  0.977 £ .01
Qv Fan: Rhyolite 0.737 £ .08 0,269 £ .0}
Ot Flood Flain G+.473 & .03 1.006 £ JOF
Trang Transition 0.469 &£ .06 1.007 + .01
5. Saline Playa. 0.431 & .09 1.013 + .02
Summar vy

Using the LAS, we have demonstrated rthat ac-
tive remore sehsing 1n the thermal infrared is
possible and has significant potential for geolo-
gic applications. With lasers we can look for

much narrowetr spectral featureés trhan are detect—

able using the TIMS. Taboratory studies indi-—
cate that such features do exist in rocks and
minerals [Lyem, 1965; and Hunt, 1980]. Dsing
GME}Z lasers 1t is possible ton extend the wave-
length range to 1l.4 pm, enabling the detectiord
of carbonates. Laser systems alse have the ad-
vantage of not being influenced by surface tem-
perature, and atmospheric effécts can be avolded..

Infrared laser remote sensing
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MAPPING ALLUVIAL FANS IN DEATH VALLEY, CALIFORNIA, USING MULTICHANNEL THERMAT. INFRARED IMAGES

Alan R. Gillespie, Anne B. Kahle and Frank D. Palluconi

Jet Propulsion Laboratory, California Institute of Technology, Pasadena, C4 911049

Abstract. We have mapped allwvial fans in
Death Vvalley, C(alifornia wusifng NASA's 8-12 wm
six-channel airborrne Thermal Infrared Multispec-—
tral Scanner (TIMSY. We are able to recognize
Both composition and relative age differences,
Age uhit boundaries are generally consistent with
those obtained By conventional mapping. Composi-
tion was verified by field investigation and com—
parison with existing geologic maps. Bedrock and
its young derived fan gravels have similar emis-
gsivities. The oripinagl ecodmpositicon of the fans
is modified by differential erosion and weather-
ing, permitting relative age mapping with TIMS.

Introduction

Recently Kahle and Goetz [1983], describing
the first results from NASA‘s airborne Thermal
Infrared Multispectral Scanner {TIMS), showed
they could readily distinguish the mapped guartz-
ires, carbonates, volcanic Tocks and salins
deposits in Death. Valley. They ised coler images
constructed from data acquired in thHe spectral
region 8-12 m. Differences among the colors
representing alluvial fans appeared to be related
to spurce materials for the gravel, the ages of
the surfaces, and the development of desert wvar-—
nish, We have now studied the TIMS Images of
these fans in greater detail, and present here an
interpretation based upen examination of the
images and of the fan gravels in the field, pre-
vious laboratery spectroscoplec studiés, and the
geologic mapping of Hunt and Mabey {lﬂﬁﬁlt

Geologic Setting

Death. Valley 'is a deep, mnarrow iorth-south
giaben iin the Basin and Range province. The gra-
ben is partly filled by saline lake sediments,
and 1s flankéd by alluvial fang and by remnants
of Tertiary wvolecanic rocks. The climate is hot
and arid, and végetation is sparse. A lithologic
map of the study area, generalized from Hurnt and
Mabey [1966] is given in Fipure 1. The study
drea covers part of the western margin of Death
Valley and the adiacent Panamint Mountains.

Bedrock Geology. In the study area the Pana-
mint Mountains consist of a sequence &f lightly
me tamorphosed FPrecambrian-Paleonzoic sedimentdry
rocks underlying Miocene volcanic rocks. In Fig-
ure 1 these are grouped by composition into units
that could be readily distinguished in the TIMS
data (Figure 2). The most widespread sedimentary
rocks are delomlte and limestone, which resist
erosion here. Argillacedus rocks such as shale
af the Johnnie Formation are common between
Blackwater Wash and Tucki Wash. They are fissile
and readily ereded. Quartzites, found throughout:

This paper is not subject to U.5. dopyright. Pub-
lished in 1984 by the American Geophysical Urion.

Paper number 4L6316.

units of different age.

differences

deposits.

the stratigraphic séttinﬁ,:are most evident near
Blackwater Wash. The steeply dipping sedimentary
rocks are highly faulted and the section 1s com-
monly repeated. The wvolcanic lavas and tuffs
range in composition from basalt. to rhyeolite.
The Amargosa thrust complex in the southern part
gf the study area, contains a breccia of rthe sed-
imentary rocks, older metamorphic rocks, and fel-
site dikes and granite.

Quaternary Sedimétits. Most of the Quaternary
deposits are lake sediments (evaporites, saline
gilts and sand) and allvvial fans. Hunt and
Mebey [1966] mapped four Quaternary alluvial fan

unlts, based upon relative weathering and gecmor-

phic characteristies but not upon lithologic com-
position. The three younger fan units oécur
within the study atrea. 0Of these, the youngest
unit (Q#} comprises active channels contalning
silt, sand and gravels teworked from the older
fan deposits. The intermediate undlt {(Q3) con-
gsists of similar gravels 4n inactive channels.
These are moderately c¢cated by desert wvarnish
[Hooke, 1972]. The oldest unit (Q,) 1z typified
by heavily wvarnished pebbles forming desert pave-
ment . Hooke [1972] subdividéd Q, Into three
In the older units the:
pavement had been partly eroded, teducing the
amount of warnish and locally exposing caliche.
The fan gravels reflect the lithologles found in
the drainages of the Panamints.

TIMS Data Acquisition and Processing

Six channels of calibrated TIMS digital radi-
ance images wlth an 18-m nadir pixel size were
acquired over Death Valley near neoon on Angust
27, 1982. TIMS acquires data at wavelengths near
8.3, 8.7, 9.1, 9.8, 10.4 and 11.3 m. This spec-—
tral region containg diagnostic. emissivity minima
for silicste minerals [Lyon, 1965; HRunt, 1950).
The depth and pesition of the wminima wary with
the crystal structure:. To display these spectral
differeneces, we used a decorrelation technique
[Soha and Schwartz, 1978 Kahle et al., 1980]
that suppressed temperature Information while
exapgerating emissivity features. Following
Kahle and Rowan [1980] and ¥Xahle and Coetz
[1983], we created & color coniposité image from
the enhanced channels 1, 3 and 5 displayved as
blue, green and ted, respectively (Figure 2)}.
Colors referred t¢ In thls article are those of
this enhanced image, and not "narural" colors.

Figure 2 clearly shows several units that are
differentiable by texture and color. Textural.
related ta topography alléw us to
distinguish bedrock from alluvial fans 4and lake
Comparison with the lithologic map
(Figure 1) shows that image color is related to
composition [Kahle and Goetz, 1983]. Carbonate

tocks appear green and quartzites are deep red.

Other clastic sedimentary rocks such as the shale
of the Johnnie Formation appear purple, as do
most wvolcanic rocks. Basalts appear blue. Rocks
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of the Amargosa thrust complex are orange or

brown. Lake deposits, to be discussed in a later
paper, are yellow, green and blue in Figure 2,

which may be due to different saline facies.

The alluvial fans are represented by the same
wide range of colors as the bedrock of the Pana-
mints. The larger fans are red (Blackwater Wash
or Trail Canyon) or purple (Tucki Wash). Smaller
fans are green, purple, yellow, or brown. The
range of colors within a given fan is limited,
but distinct variations are present. In general,

contacts appear sharp, not gradational.

-
e

Fig. 1. Simplified lithologic map of the study
area, after Hunt and Mabey [1966]. Units are
those that can be distinguished in Fig. 2.
Explanation on the next page.

Fans with Multichannel Thermal Images

Interpretive Map

Figure 3 is an interpretive map based on the

TIMS image (Figure 2). Identification of the
mapped bedrock and alluvial units was based upon

our field inspection and Hunt and Mabey [1966].
The old gravels (Q,) of Hunt and Mabey were con-
sistently recngniza?ble in the TIMS image as deep
red or pink areas in the reddish purple fans.
The Qp of some, but not all, of the green fans
are depicted as light orange. However, distinc-
tion between the younger (:‘P[Mand Q, gravels was

not always possible in the S image.
Hunt and Mabey [1966] mapped alluvial gravels

based on relative age only. We further subdivid-

ed the gravels according to composition and prov-
enance. We recognized six suites of fan gravels,

distinguished by their assemblages of litholo-
gies. Fans below the major canyons contained a
wide mixture of rock types, dominated by the
shales and quartzites found near the crest of the
mountains. The fan gravels of Tucki Wash were
largely shales of the Johnnie Formation, with
lesser amounts of the resistant dolomite member.
Fans below Trail Canyon and Blackwater Wash had
more Stirling Quartzite and less shale. The fan
gravels between Tucki Wash and Blackwater Wash
contained quartzite and shale, but little dolo-
mite. Lithologically, these fans were intermed-
iate between those of Tucki Wash and Blackwater
Wash. Fans of the fourth type were composed dom-
inantly of carbonate clasts. These fans were
found below smaller drainages that did not pene-
trate deep into the mountains, but were cut into
only the resistant carbonate rocks at the range
front. Fans beneath large exposures of the Ter-

tiary volcanic rocks consisted largely of the
volcanic rocks. Finally, some fans contained a

mixture of wvolcanic, carbonate, argillaceous and

other rock types. We mapped these compositional-
ly complex fans as undifferentiated mixtures.

Discussion

The colors depicting the alluvial gravels
appear to be controlled primarily by the prove-

EXPLANATION FOR SIMPLIFIED GEOLOGIC MAP

Recent saline
| @s | playa and lake Mississippian Tin

sediments Mountain Limestone
and argillaceous
sedimentary rocks
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Pleistocene fan Formation -
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T

ik

Scales

Fig. 2. Enhanced TIMS radiance image.
and orientation are shown in Fig. 3.

nance. Debris from slopes consisting of a single
rock type 1is the same color as the bedrock, and
in some cases the contact between debris and bed-
rock cannot be distinguished. This is especially
evident in Blackwater Wash, for source regions of
Stirling Quartzite (red) and carbonate rocks
(green). The color of fan gravels of mixed lith-
ologies can be predicted from the colors of the
source rocks. Thus, in Blackwater Wash and Trail
Canyon, the magenta of the younger gravels (Qj
and q&) arises from mixing red Stirling Quartzite

and purple shale of the Johnnie Formation.
Differential erosion of bedrock plays a major

role in determining the lithologies present in
the fan gravels. In Trail Canyon, gravels of
easily eroded quartzite and shale, which crop out
west of the study area, are transported through

4.5 km of resistant dolomite bedrock before depo-
sition on the alluvial fan. The color of these

T | ‘ _"'"'i-.
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gravels above and below the dolomite are wirtual-
ly the same, showing that the admixture of dolo-
mite is minor,

Differential erosion of gravels withian a fan
contributes to compositional change over time,
This controls the color in the TIMS image and

forms the basis for the relative age discrimina-

tion, For examplé, the gravels in the active
channels of Tuckl Wash are dominately fragments
of fissile shale. Surfaces of the older alluvial
deposits (Q;) are a desert pavement. of dolomite
and quartzite; exposed shale has been teduced to
fine grains and removed. This would have the
effect of removing purple, and could accdount for
the pink color of this Qs. Compositional changes
also occéur in some carhonate fans as they weath-
et. We attribute the yellow color of @, Bravels
riorth of Trail Canyon fo the dissolvineg of car-
bonate from gritty dolomite; concentrating quart=
zite and other clastic sediments. Dissolwed car-
bonate may be precipitated as caliche fnear inac-
tive surfaces of fans. Such caliche has been
widely exposed by erosion and deflation of some
), surfaces [Hooke, 1972]. Mixing of the green
n% the carbonate caliche with the deep reddish
purple of the uneroded gravels could result in
pink. We observed exposed cgliche on the pink ¢
units north of the active chamnel of the Trai%
Canyon fan and in Tueki Wash.

Many of the gravels found throughout the area,
especially the quartzite and other clastic sedi-
mentary rocks, are heavily coated with desert
varnish.
nished dquartzite {M. J. Bartholomew, pers. comm.,
1984) indicate that the emissivity minimmm will
be smaller and will occur at a longer wavelength
than that for unvaranished duartzite. Varnish
sheuld decréaase the intensity of the red color of
the quartzite and perhaps shift the color towards
blue or purple. This may cccur on the varnished
Qs gravels on the northern half of the Trail Can-
yon fan. Howeéver, the equally heavily warnished
gravels of the Qg'desert pavement sguth of Traill
Canyen appear to be the same shade of red as the
bedrock. guartzite. We think this simlilarity is
an artifact of the enhancement process, but 1t
will be the subject of further study.

Conclusion

Alluvial fan units of different litholegic
compasitions aund weathering have beén mapped
according to provenance and relative age with. the
aid of multichannel thermal infrared images. The
lithalogic data i1ncludaed here are usually neot
given for fan gravels ian conventional geologic

Thermal IR reflectance spectra of var—

MAPS Boundaries of the age units determined
from the thermal imapes are generally consistent
with those of Hunt and Mabey [1966]., The ability
to map lithologic composition and relative age of
gravels is a significant adwvance In remoté sens-
ing. Compositional mapping with wmultichannel
thefmal infraréed imasges is widely applicable, as
long as vegetative cover is incomplete.
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